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ABSTRACT 

 
This paper explores the vibration spectra for planetary gear 

systems by studying a kinematic model of vibration and 
comparing the model with measurements of two helicopter 
transmissions made in flight. The model and flight data include 
systems with both uniformly and nonuniformly spaced planet 
gears. This model predicts vibration to occur only at 
frequencies that are integer multiples of the planet spacing 
repetition frequency and clustered around gear mesh 
harmonics. Vibration measurements show the model correctly 
predicts the frequencies with large components around the first 
several harmonics of the gear mesh frequency. Measurements 
do not confirm some of the more detailed features predicted by 
the model. Some features in the spectra from the numerically 
derived model can be used to separate the model data with and 
without planted faults. These features were not found useful for 
detecting faults in the vibration measurements of real gearboxes 
in flight due to added complexity in the spectra from real 
gearboxes. 
 
Keywords: Flight test, Helicopter transmission, Kinematic 
model, Planetary gear, Vibration measurement.,  
 
INTRODUCTION 

 
An understanding of vibration spectra is very useful for 

any gear fault detection scheme based upon vibration 
measurements. The vibration measured from planetary gears is 
complicated. In this paper, the term planetary gear system 
refers to the compound gear systems with planet gears between 
a center sun gear and an outer ring gear, with the ring gear 
fixed and not rotating. Planetary gear systems (Fig. 1) provide 
coaxial gear reductions and are useful for machinery with high 
power requirements such as helicopter transmissions. Sternfeld 

[1] noted the presence of sidebands about the gear mesh 
harmonics spaced at the planet passage frequency in spectra 
measured near the ring gear of a CH-47 helicopter.  McFadden 
[2] proposed a model of the vibration transmission that predicts 
high spectral amplitudes at multiples of the planet passage 
frequency (number of planets times planet carrier revolution 
frequency), for planetary gears with evenly spaced planets.  
This model correctly predicts shifting of the strong signal from 
a gear mesh frequency to a sideband of the meshing frequency 
when the number of teeth on the ring gear is not an integer 
multiple of the number of planets. 
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Fig. 1 Planetary Gear System 

 
The spectra of vibration measured from planetary gear 

systems are more complicated than the spectra measured from 
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simple gear mesh pairs. For simple gear mesh pairs in normal 
operation, most of the vibration occurs at the gear mesh 
frequency and it’s integer harmonics. For a planetary gear 
system, most vibration measured in the reference frame of the 
transmission occurs at various sidebands of the gear mesh 
frequency and its integer harmonics. This added complexity in 
planetary gear systems invalidates the use of the various 
metrics developed [3-6] to test for faults in gear pairs. Planetary 
gear vibration signal separation schemes have been developed 
with reported success by McFadden [7-9], Forrester [10] and 
Samuel [11] to enable the detection of faults in planetary gear 
systems. For separation, the signal attributed to each planet gear 
is assembled from parts of the measured signal when the planet 
gear is closest to the measurement transducer. These signal 
separation methods all require knowing the location in time 
when a planet gear passes closest to the measuring 
accelerometer. Planet passage detection by use of a carrier 
phase signal requires the use and maintenance of the reference 
phase angle. Determining the planet passage from the vibration 
signal itself can be more difficult than one might expect. The 
separation can become more difficult with larger numbers of 
planet gears. Unevenly spaced planet gears add more 
complexity to the signal separation task. 

 
This study examines the spectra of planetary gear vibration 

by means of a model and flight measurements. The goal is to 
gain a better understanding of these spectra, which could lead 
to the discovery of features in the spectra that could be utilized 
in fault detection. The model and the analysis of flight 
measurements will be described. Spectra will be shown from 
numerically derived model data with and without added noise, 
tooth-to-tooth variation and planted flaw. Spectra will be shown 
from measurements made of two four-planet systems, one with 
uniformly spaced planet gears the other with nonuniformly 
spaced planet gears. The signal of the numerically derived 
model can be made to approximate the signal of the measured 
helicopter system by setting model parameters judiciously.    

 

NOMENCLATURE 
 

C  Parameter, sum of complex exponential functions 
G  Fourier coefficients for a planet gear mesh signal 
J  Number of planet gears 
N  Number of teeth on ring gear 
R  Repetition frequency of planet passage spacing 
T  Time for one planet carrier rotation 
V  Fourier coefficients for vibration signal from a single 

planet gear at measurement location 
W  Fourier coefficients for window function 

representing the amplitude variation of the vibration 
from a planet gear as the gear revolves around the 
sun gear 

Z  Set of all integers 
g  Time domain vibration from a planet gear mesh 
i  1−  
j  Integer index for planet 

k , l  Integer index for Fourier coefficient 
m  Integer index 

q  Time delay of planet passage 
t  Time 
v  Time history vibration signal from a planetary gear 

system at measurement location 
w  Window function representing the amplitude 

variation of the vibration from a planet gear as the 
gear revolves around the sun gear 

 
MODEL DEVELOPMENT 

 
A model of an idealized signal from a planetary gear 

system is developed. A planetary gear system contains a central 
sun gear, a coaxial outer ring gear and several planet gears 
between the sun and ring gears. The sun and ring gears can 
rotate. The planet gears rotate and can revolve around the sun 
gear while connected to each other through a carrier cage. One 
of the planetary gear elements, ring gear, sun gear or planet 
gears, remains stationary while the other two move around the 
center. This study concerns the case with a stationary ring gear. 
Both planet/sun and planet/ring meshings produce vibrations.   

 
Assume that the planet gears are identical. Also, assume 

that the teeth in the sun gear are identical to each other, the 
teeth in the ring gear are identical to each other and the teeth on 
the planet gears are identical to each other. The uniformity of 
gear teeth leads to each planet/ring tooth interaction being 
identical and producing identical local response in the structure; 
and the same is true for each planet/sun tooth interaction. One 
way to measure vibration is with an accelerometer. An 
accelerometer will measure the gear mesh signals from all of 
the interactions after they propagate through the structure. With 
J  planets, the total signal at the accelerometer may be modeled 
as the sum of the signals from each planet gear with the signal 
from each planet gear represented as the product of a window 
function, jw , modeling the amplitude of the transfer function 

from the gear vibration source times a gear mesh function, jg , 

modeling the gear vibration source. For planetary gear systems 
in helicopters, both the amplitude and time derivative of the 
retarded time delay are insignificant. The wavelength of the 
first harmonic is of the order of 10 m, much larger than the 
difference in distance from the transducer to the near and far 
ranges of the planet mesh vibration source. The Mach number 
of the vibration source is of the order of .001 to .01. Since both 
time delay wave propagation effects and Doppler effects are 
negligible, the retarded time delay will be considered zero in 
this model, thus ignoring wave propagation effects to make a 
much simpler model. The model equation with jq as the delay 

time associated with each planet revolving around the center of 
the system is: 
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Transforming Eq. (1) to the frequency domain with a 

Fourier series yields: 
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 Define a parameter ( )C k  equal to the sum of the 

exponential terms 
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The gear mesh function, g , is periodic with the gear mesh 
frequency, so the coefficients of its Fourier series have non-
zero values only at integer multiples of the gear mesh 
frequency. For the period of one planet gear revolution, non-
zero values occur only at integer multiples of N , the number of 
teeth on the ring gear, 
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Combining Eqs. (2), (3), (4) and (5) leads to: 
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Now assume that the window function contains most of its 
energy at relatively low frequency so that its spectrum is 
significantly decayed and stays decayed at harmonics indexed 
above one half the number of teeth on the ring gear. For such 
well-behaved windows, one term in Eq. (6) will dominate the 
series. The dominant term is the term that minimizes the 
difference in the index of the gear mesh frequency with the 
index of the complete planetary gear signal. So choose km  so 

that kk m N−  is a minimum, then the series may be 

approximated by its dominant term, 
  

 [ ] ( ) [ ] [ ]1 1V W Gk k

C k
k k m N m N

T
≈ −  (7) 

For example, if the ring gear contains N  teeth, the terms 
in the window function that contribute to a term in the total 
signal will be spaced at the interval of N . Unless the window 
function is very spiky, only Fourier coefficients with indices 
much less than N  will have significant amplitude. Thus, at 
most, only one term in Eq. (6) will be significant. Moreover, for 
values of the index k  far from any gear mesh harmonic, all the 
terms are insignificant compared to the energy in the total 
signal.  
 

For evenly spaced planet gears, the time offset between 
them are equally spaced through the time, T , of a planet 
revolution. With this simplification, the parameter ( )C k  takes 

on a simple form, 
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because the individual complex exponential terms take on the 
value of one when /k J  is an integer since 

( )1 / ( 1) /jk q q T k j J− = − is then always an integer. When 

/k J  is not an integer, the complex exponential terms are 
evenly spaced around the unit circle and sum to zero.  

 
For systems with unevenly spaced planet gears, the ratio of 

the frequency index to the repetition frequency, /k R , is the 

relevant parameter for determining when the sum ( )C k  is zero 

or nonzero. The repetition frequency, R , is the frequency at 
which the planet passage spacing pattern repeats itself:  
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When analyzed with a period equal to the planet 
revolution, the Fourier Series for the model of the idealized 
signal from a planetary gear with evenly spaced planet gears 
contains nonzero terms only for frequencies that are integer 
multiples of the number of planets in the gear multiplied by the 
planet revolution frequency. The energy is clustered in 
sidebands about the integer multiples of the gear mesh 
frequency. If the number of teeth in the ring gear is not an 
integer multiple of the number of planets, there is no signal at 
the gear mesh frequency according to this analysis. A more 
detailed development of this mode will be published at a later 
date. 

 
With this simple kinematic model of the vibration signal 

from a planetary gear system, some features of the signal are 
predicted without knowledge of the actual forcing function or 
transfer function. The model predicts the frequencies where 
larger amplitudes are expected using only the tooth count of the 
ring gear, number of planet gears and relative spacing of the 
planet gears. Vibration energy from this ideal model will occur 
only in clusters of side bands and some gear mesh harmonics 
around the harmonics of the gear mesh frequency. Only side 
band and harmonic frequencies that are integral multiples of the 
repetition frequency will contain vibration energy. In a system 
with evenly spaced planet gears, the repetition frequency is the 
planet passage frequency. In a system with non-uniformly 
spaced planet gears, the repetition frequency occurs between 
the carrier frequency and the planet passage frequency. For 
example, the transmission in the OH-58C contains four planet 
gears spaced in pairs that are 180 deg apart and intersect at 
about 91.4 deg. In this system, the repetition frequency is twice 
the carrier frequency since the planets are 180 deg. This simple 
kinematic model explains why the amplitude of pure gear mesh 
frequency is in the noise level instead of high for some 
planetary gear systems; vibration energy measured in the fixed 
reference system only occurs at multiples of the repetition 
frequency. When the gear mesh frequency is not a multiple of 
the repetition frequency there will be no energy at the gear 
mesh frequency when analyzed with a block size equal to an 
integer number of carrier rotations. 

 
Some assumptions in this idealized model are unrealistic 

for real planetary gear systems. Even the most precisely 
manufactured gear system contains tooth-to-tooth variations in 
its geometry and material properties leading to tooth-to-tooth 
variation in the vibration forcing function. Noise is always 
present from various sources. To consider these effects, noise 
will be added to the model signal and amplitude modulation 
will be applied to the “ ideal”  gear mesh vibration signals. To 
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consider the effect of a gear flaw, phase modulation will be 
applied to a short section of an ideal planet gear mesh signal. 

 
ANALYSIS OF FLIGHT MEASURMENTS  

 
NASA Ames Research Center has been measuring 

vibration of helicopter transmissions in flight tests since 1998. 
Ames’  researchers tested the AH-1S helicopter in 1998 and 
1999 and the OH-58C helicopter in 2000 in a series of 
controlled flight conditions throughout the flight envelope, see 
Huff [12, 13] for details. The AH-1S helicopter has a gross 
weight of 4000 kg and its transmission contains two planetary 
gear systems. The ring gear contains 119 teeth, the sun gear 
contains 57 teeth and the planet gears contain 31 teeth in both 
systems. The upper planetary system contains eight uniformly 
spaced planet gears and the lower planetary system contains 
four uniformly spaced planet gears. The OH-58C has a gross 
weight of 1280 kg and contains one planetary gear system with 
99 teeth on the ring gear, 27 teeth on the sun gear and 35 teeth 
on the planet gears. This system contains four non-uniformly 
spaced planet gears; the planet gears come in pairs spaced 180 
deg apart with the angle between the pairs other than 90 deg. 

 
The AH-1S was instrumented with two tri-axial 

accelerometers on the transmission cover, one near the upper 
planetary ring gear and the other near the lower planetary ring 
gear. The OH-58C was instrumented with one tri-axial 
accelerometer and three single axis accelerometers, all mounted 
on the casing around the ring gear. On both helicopters, torque 
was measured by calibrating the oil pressure and the main rotor 
shaft was instrumented with a 1/rev signal generator. Vibration 
data, oil pressure for torque and a 1/rev signal were collected 
with a pc-based digitized system on board the aircraft. The anti-
aliasing filter was set to 18 kHz and sample rate was 50 kHz. 

 
For this study, the time histories of all vibration 

measurements were interpolated to a fixed number of samples 
per rotation of the carrier cage of the planet gear. Vibration data 
from the AH-1S upper planetary gear and OH-58C were 
interpolated to 8192 samples per rotation. Data from the AH-1S 
lower planetary gear were interpolated to 4096 samples per 
rotation. All of these resampling frequencies are consistent with 
the Nyquist criteria. Amplitude spectra were made from time 
synchronous averages of the signals and amplitude spectra were 
also made from averaging the power spectra of individual 
blocks of data one carrier rotation long. With the time 
synchronous averaging, frequency components that are not 
integer multiples of the carrier rotation frequency will be 
reduced in amplitude and thus the periodic componant of the 
planetary gear vibration will be emphasized. The amplitudes of 
both random frequency components and discrete frequency 
components not commensurate with the carrier frequency will 
be reduced. On the other hand, with averaging power spectra, 
all frequency components are retained whether periodic with 
the carrier rotation or not. All Fast Fourier Transforms were 
made with a rectangular window on the data blocks. The 
rectangular window has a benefit for the frequency analysis of 
data when the frequencies of interest are exact integer multiples 
of the inverse of the block size, as was set up with the 
interpolation to a fixed number of sample points per carrier 
revolution. Under these specific circumstances, the benefits of 

the rectangular window include the conservation of energy in 
the transformed signal, no alteration of amplitude of periodic 
frequency components due to window effects and the 
smoothing of non-periodic components in the frequency 
domain. 
 
RESULTS FROM MODELING 

 
Numerically generated planetary gear vibration data were 

produced based upon the ideal model described above. Spectra 
were calculated with and without noise, amplitude modulation 
on the gear mesh signal and phase distortion on a section of a 
planet gear. A system was chosen with 119 teeth on the ring 
gear and 4 equally spaced planet gears with 31 teeth. The block 
size in the spectrum is one carrier rotation, thus frequency 
index 119 is the gear mesh frequency and frequency index 4 is 
the repetition frequency. Figure 2 shows the spectrum for the 
ideal case with significant amplitudes only at multiples of 4. 
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Fig. 2 Spectrum for ideal model planetary gear 

vibration signal 
 
Circles indicate frequencies where the ideal model predicts 

non-zero amplitudes. Large amplitudes occur at frequency 
indices 116, 120, 236, 240, 356, 360, 476, 592, 596, … and so 
on. The form of Eq. (7) predicts certain patterns and 
symmetries in the amplitudes of these frequencies by the form. 
Only a small number of the low frequency window coefficients 
contribute any significant energy. One of these low frequency 
window components and its equal amplitude negative 
frequency componant will modulate more than one of the gear 
mesh harmonics. In this example with four uniformly spaced 
planet gears, the relative amplitude of the sidebands to the 
forcing gear mesh harmonic will repeat every forth gear mesh 
harmonic. For example the relative amplitudes around the first 
gear mesh harmonic, 119, have the same pattern as the relative 
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amplitudes around the fifth gear mesh harmonic, 595. In 
addition, the relative amplitudes of the sidebands around 357, 
the third gear mesh harmonic, are identical to the relative 
amplitudes of the sidebands around the first and fifth gear mesh 
harmonics in reverse order. The final pattern in this example is 
that the sidebands around all of the even numbered gear mesh 
harmonics have symmetric amplitudes. 

 
Figure 3 shows the spectrum when noise is added to the 

example model. In this case, the noise raises the level of the 
zero and low amplitude frequency components and slightly 
modifies the amplitude of the significant components as can be 
seen in the sidebands of the sixth gear mesh harmonics which 
are no longer symmetric.  
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Fig. 3 Spectrum for ideal model planetary gear 

vibration signal plus noise 
 
Figure 4 displays the spectrum with the original planet gear 

signal modified so that the amplitude varies for each tooth in 
each planet gear and a smaller variation is added to each 
rotation of the planet gears. In comparison with the ideal model 
(Fig. 1), more broadband energy appears between the gear 
mesh harmonics and there appears to be more energy and 
feature variety in the sidebands of the gear mesh harmonics. 
The vibration signal from a real gear system will have both 
noise and tooth-to-tooth variations, Fig. 5 displays the model 
with both these alterations. As before, the addition of noise 
increases the broadband noise floor. 

 

0 200 400 600 800

10
-2

10
0

Frequency Index

R
el

at
iv

e 
A

m
pl

itu
de

90 100 110 120 130 140

10
-2

10
0

Frequency Index

R
el

at
iv

e 
A

m
pl

itu
de
 

Fig. 4 Spectrum for ideal model planetary gear 
vibration signal with tooth-to-tooth variation 

 
Next, consider the model with a fault in one planet gear 

(Fig. 5). This spectrum, where a phase distortion was added to a 
section of one of the planet gear vibration signals, contains 
several features not in the spectra from the ideal model nor the 
ideal model with added noise and tooth-to-tooth amplitude 
variation. No amplitudes are zero, thus the spectrum looks like 
more complicated noise has been added. There is a distinct 
periodic ripple with a frequency near 3, especially visible 
below the first gear mesh harmonic. In addition, some sculpted 
enveloping shows. The complex cepstrum of this flawed signal 
indicates repetitions in the spectrum at about 2.3, 19.7, 29.3 and 
56.8 per rotation of the planet carrier. These structures in the 
spectrum indicate the possibility of devising a test for planetary 
gear flaws based upon the amplitude spectrum of the vibration 
signal resampled to a fixed number of samples per carrier 
rotation. These structures will not be evident unless the time 
samples are at a constant phase separation instead of constant 
time separation. However, this particular flaw is extreme; the 
value of FM4 [3] for the raw gear mesh signal with a flaw and 
noise is 25.7 while the value of the ideal raw gear mesh signal 
with noise and without fault is 3.0. FM4 is a metric designed to 
find anomalies in gear vibration signals. FM4 increases if the 
signal contains a local increase in amplitude or a local phase 
distortion. The nominal value of FM4 is 3 and it is not 
uncommon for values of 6 or lower to be measured in test rigs 
containing gear faults [5, 14]. 
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Fig. 5 Spectrum for ideal model planetary gear 

vibration signal with tooth-to-tooth variation and 
noise 
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Fig. 6 Spectrum for ideal model planetary gear 

vibration signal with planted fault 
 
RESULTS FROM FLIGHT MEASUREMENTS 

 

To determine the validity of this ideal model, spectra from 
flight measurements of helicopters will be viewed and 
compared with the model. First spectra from time synchronous 
averages will be viewed; by averaging on the carrier rotation 
any tooth-to-tooth variations from the planet gear and sun gear 
will be minimized. The lower planetary gear system on the 
Cobra has 119 teeth on the ring gear and 4 equally spaced 
planet gears, each containing 31 teeth, the same gear 
configuration of the model studied in the previous section. 
Figure 7 displays a spectrum derived from the time 
synchronous average of 31 carrier rotations from the lower 
planet carrier on the Cobra helicopter. Circles indicate the 
location of frequencies where the model predicts “discrete”  
components, frequencies that are integer multiples of four and 
sidebands around 119 and its integer multiples. The high 
amplitude frequencies identified by the model agree well with 
the high amplitude frequencies found in the data. The 
frequencies at the sidebands close to gear mesh harmonics 
selected by this model are the frequencies near the gear mesh 
harmonics with high measurement levels, especially at the 
lower harmonics. The frequency predictions tend not to be 
exact at the higher order gear mesh, as can be seen around the 
8th gear mesh harmonic (frequency index = 952) in this 
example. Some parts of the spectrum not identified by the 
model are relatively high, note the region around frequency 
index 200. The model does not contain all the other vibration 
sources on the helicopter. The source of the vibration near 
frequency index 200 comes from some other component not 
synchronous with the lower planet carrier as can be confirmed 
by this regions very large relative amplitude in the spectra in 
Fig. 8 made from a power spectral average instead of a time 
synchronous average. In the power spectral average, the 
frequency components identified by the model are still 
prominent, but not dominant. The relationships between the 
amplitudes of sidebands predicted by the model are not present 
in the measured vibration from the flight test; the patterns about 
the first and fifth gear mesh harmonics differ greatly and the 
patterns about the even gear mesh harmonics are not 
symmetric. 

 
The overall image of the measured flight spectra in Figs. 7 

resemble the spectra of the model with a planted flaw in Fig. 6 
more than any of the models without flaws in Figs. 2-5. There 
appears to be so much complexity in the vibration signals of 
helicopter transmissions measured in flight, that the unique 
features seen in the model containing a simulated fault could 
easily be masked by complexity in the measured flight data.  
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Fig. 7 Spectrum from Lower Cobra Planetary System 

made from a time synchronous average 
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Fig. 8 Spectrum from Lower Cobra Planetary System 

made from a power spectral average 
 
The ideal model predicts a different set of high amplitude 

frequencies for a system with unequally spaced planet gears. 
Ames’  researchers measured transmission vibrations on an OH-

58C with unequally spaced planet gears. As shown in Fig. 8, 
high amplitude spectral components occur at frequencies 
predicted by the model, integer multiples of two at and near 
integer multiples of the gear mesh frequency, 99. Note in this 
example, both the discrete frequency components and 
broadband components are largest near the tenth gear mesh 
harmonic. This overall spectral shape is believed due to the 
frequency response of the transducer mounted on a bolt of the 
transmission housing. In this four planet case, the ideal model 
predicts all the sideband amplitude patterns of the even gear 
mesh harmonics will be equal to each other and all the sideband 
amplitude patterns of the odd numbered gear mesh harmonics 
will be equal to each other. As with the previous example, the 
sideband amplitude patterns differ markedly from those 
predicted by the model. In this example, the model does an 
excellent job of predicting which frequencies have relatively 
high amplitudes up through the 11th gear mesh harmonic, and 
some discrepancies in the 12th harmonic and above even though 
the broadband noise does not become highly significant until 
the 15th harmonic. 

 

0 200 400 600 800 1000

10
-2

10
0

Frequency Index

R
el

at
iv

e 
A

m
pl

itu
de

80 90 100 110 120

10
-2

10
0

Frequency Index

R
el

at
iv

e 
A

m
pl

itu
de

 
Fig. 8 Spectrum from OH-58C Planetary System made 

from a time synchronous average 
 

CONCLUSION 
 

A model of idealized planetary gear vibration was 
developed that explains some characteristics of spectra without 
specific knowledge of the vibration source or transfer functions. 
The model predicts discrete frequency components in the 
spectra at integer multiples of the planet repetition frequency at 
gear mesh harmonic frequencies and their side bands. The 
discrete frequencies predicted by the model match the 
frequencies of large amplitude components in measurements 
from real helicopter transmissions in flight, especially up to the 
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10th gear mesh harmonic. Frequencies do not match as well 
around higher gear mesh harmonics. The model predicts the 
repetition of relative side band amplitudes and their mirror 
image at certain related harmonics; measurements of vibration 
from real planetary gear systems do not show these relations. 
Some features in the spectra from the numerically derived 
model can be used to separate the model data with and without 
planted faults. These features are not expected to be useful for 
detecting faults in the vibration measurements of real gearboxes 
in flight due to added complexity in the spectra from real 
gearboxes. 
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